lunes, 3 de diciembre de 2007

INTRODUCCION A LA ROBOTICA

LA ROBOTICA








La Robótica
La robótica es una rama del árbol tecnologia, que estudia el diseño y construcción de máquinas capaces de desempeñar tareas repetitivas o peligrosas para el ser humano. Las ciencias y tecnologías de las que deriva podrían ser: el algebra, los automatas programables, las maquinas de estado, la mecanica, la electronica y la informatica.

Historia
La historia de la robótica ha estado unida a la construcción de "artefactos", que trataban de materializar el deseo humano de crear seres a su semejanza y que lo descargasen del trabajo. El ingeniero español Leonardo Torres Quevedo (GAP) (que construyó el primer mando a distancia para su torpedo automóvil mediante telegrafia sin hilodrecista automático, el primer transbordador aereo y otros muchos ingenios) acuñó el término " automática " en relación con la teoría de la automatización de tareas tradicionalmente asociadas a los humanos. Karel Capek, un escritor checo, agrego en 1921 el término "Robot" en su obra dramática "Rossum's Universal Robots / R.U.R.", a partir de la palabra checaRobbota , que significa servidumbre o trabajo forzado. El término robótica es agregado por Isaac Asimov, definiendo a la ciencia que estudia a los robots. Asimov creó también las Tres leyes de la robotica. En la ciencia ficcion el hombre ha imaginado a los robots visitando nuevos mundos, haciéndose con el poder, o simplemente aliviando de las labores caseras. Roman Gubern analiza en su libro El sinmio automatizado los motivos del ser humano para crear seres artificiales a su imagen y semejanza . Algunos robots están diseñados hoy en día para parecerse a los humanos. La robótica ha alcanzado un nivel de madurez bastante elevado en los últimos tiempos, y cuenta con un correcto aparato teórico. Sin embargo, al intentar reproducir algunas tareas que para los humanos son muy sencillas, como andar, correr o coger un objeto sin romperlo, no se ha obtenido resultados satisfactorios, especialmente en el campo de la robotica autónoma . A pesar de ello se espera que el continuo aumento de la potencia de los ordenadores y las investigaciones en inteligencia artificial, vision artificial , la robótica autónoma y otras ciencias paralelas permitan acercarse un poco más cada vez a los milagros soñados por los primeros ingenieros y también a los peligros que adelanta la ciencia ficción.

Clasificación de los robots.
La potencia del software en el controlador determina la utilidad y flexibilidad del robot dentro de las limitantes del diseño mecánico y la capacidad de los sensores. Los robots han sido clasificados de acuerdo a su generación, a su nivel de inteligencia, a su nivel de control, y a su nivel de lenguaje de programación. Éstas clasificaciones reflejan la potencia del software en el controlador, en particular, la sofisticada interacción de los sensores. La generación de un robot se determina por el orden histórico de desarrollos en la robótica. Cinco generaciones son normalmente asignadas a los robots industriales. La tercera generación es utilizada en la industria, la cuarta se desarrolla en los laboratorios de investigación, y la quinta generación es un gran sueño.

Robots de primera generación:
Dispositivos que actúan como "esclavo" mecánico de un hombre, quien provee mediante su intervención directa el control de los órganos de movimiento. Esta transmisión tiene lugar mediante servomecanismos actuados por las extremidades superiores del hombre, caso típico manipulación de materiales radiactivos, obtención de muestras submarinas, etc. Robots Play-back, los cuales regeneran una secuencia de instrucciones grabadas, como un robot utilizado en recubrimiento por spray o soldadura por arco. Estos robots comúnmente tienen un control de lazo abierto.

Robots de segunda generación:
El dispositivo actúa automáticamente sin intervención humana frente a posiciones fijas en las que el trabajo ha sido preparado y ubicado de modo adecuado ejecutando movimientos repetitivos en el tiempo, que obedecen a lógicas combinatorias, secuenciales, programadores paso a paso, neumáticos o Controladores Lógicos Programables. Un aspecto muy importante está constituido por la facilidad de rápida reprogramación que convierte a estos Robots en unidades "versátiles" cuyo campo de aplicación no sólo se encuentra en la manipulación de materiales sino en todo los procesos de manufactura, como por ejemplo: en el estampado en frío y en caliente asistiendo a las máquinas-herramientas para la carga y descarga de piezas. En la inyección de termoplásticos y metales no ferrosos, en los procesos de soldadura a punto y continúa en tareas de pintado y reemplazando con ventaja algunas operaciones de máquinas convencionales. Robots controlados por sensores, estos tienen un control en lazo cerrado de movimientos manipulados, y hacen decisiones basados en datos obtenidos por sensores.

Robots de tercera generación:
Son dispositivos que habiendo sido construidos para alcanzar determinados objetivos serán capaces de elegir la mejor forma de hacerlo teniendo en cuenta el ambiente que los circunda. Para obtener estos resultados es necesario que el robot posea algunas condiciones que posibiliten su interacción con el ambiente y los objetos. Las mínimas aptitudes requeridas son: capacidad de reconocer un elemento determinado en el espacio y la capacidad de adoptar propias trayectorias para conseguir el objetivo deseado. Los métodos de identificación empleados hacen referencia a la imagen óptica por ser esta el lenguaje humano en la observación de los objetos, sin embargo no puede asegurarse que la que es natural para el hombre, constituye la mejor solución para el robot. Robots controlados por visión, donde los robots pueden manipular un objeto al utilizar información desde un sistema de visión.

Robots de cuarta generación:
Robots controlados adaptablemente, donde los robots pueden automáticamente reprogramar sus acciones sobre la base de los datos obtenidos por los sensores.

Robots de quinta generación:
Robots con inteligencia artificial, donde las robots utilizan las técnicas de inteligencia artificial para hacer sus propias decisiones y resolver problemas.

La Asociación de Robots Japonesa (JIRA) ha clasificado a los robots dentro de seis clases sobre la base de su nivel de inteligencia:
1.- Dispositivos de manejo manual , controlados por una persona.
2.- Robots de secuencia arreglada.
3.- Robots de secuencia variable, donde un operador puede modificar la secuencia fácilmente.
4.- Robots regeneradores, donde el operador humano conduce el robot a través de la tarea.
5.- Robots de control numérico, donde el operador alimenta la programación del movimiento, hasta que se enseñe manualmente la tarea.
6.- Robots inteligentes, los cuales pueden entender e interactuar con cambios en el medio ambiente.

Los programas en el controlador del robot pueden ser agrupados de acuerdo al nivel de control que realizan.
1.- Nivel de inteligencia artificial, donde el programa aceptará un comando como "levantar el producto" y descomponerlo dentro de una secuencia de comandos de bajo nivel basados en un modelo estratégico de las tareas.
2.- Nivel de modo de control, donde los movimientos del sistema son modelados, para lo que se incluye la interacción dinamica entre los diferentes mecanismos, trayectorias planeadas, y los puntos de asignación seleccionados.
3.- Niveles de servosistemas, donde los actuadores controlan los parámetros de los mecanismos con el uso de una retroalimentacion interna de los datos obtenidos por los censores, y la ruta es modificada sobre la base de los datos que se obtienen de censores externos. Todas las detecciones de fallas y mecanismos de corrección son implementadas en este nivel. En la clasificación final se considerara el nivel del lenguaje de programación. La clave para una aplicación efectiva de los robots para una amplia variedad de tareas, es el desarrollo de lenguajes de alto nivel. Existen muchos sistemas de programación de robots, aunque la mayoría del software más avanzado se encuentra en los laboratorios de investigación.

EL NIVEL DEL LENGUAJE DE PROGRAMACIÓN.
Los sistemas de programación de robots caen dentro de tres clases: 1.- Sistemas guiados, en el cual el usuario conduce el robot a través de los movimientos a ser realizados.
2.- Sistemas de programación de nivel-robot, en los cuales el usuario escribe un programa de computadora al especificar el movimiento y el censado.
3.- Sistemas de programación de nivel-tarea , en el cual el usuario especifica la operación por sus acciones sobre los objetos que el robot manipula.

No hay comentarios: